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for drug-outcome associations in health
care data
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Introduction
Postapproval drug safety studies often test a prespecified hy-
pothesis of association between a drug exposure and an out-
come. A testable hypothesis may come from spontaneous
reporting schemes, published case reports, analogy to chemi-
cally similar drugs, worrisome results from clinical trials or
even from speculation and anecdote. Large, linked health
data resources have become the standard venue for such hy-
pothesis-driven drug safety research in Europe and North
America.

The use of these health care data as a resource for generat-
ing hypotheses is more controversial. Some initiatives to
screen health care data for drug safety signals have been
around for a long time, such as the case–control surveillance
of Boston University’s Drug Epidemiology Unit [1] and the
Kaiser Permanente drug-cancer screening programme [2],
while newer efforts include screening for drug-cancer associa-
tions in Denmark [3] and screening across all possible out-
comes for selected medical products in the US Food and
Drug Administration’s Sentinel System [4, 5].

A key challenge for screening initiatives is differentiation
of potential safety signals from background noise. Here, we (i)
briefly introduce an example of such a large-scale screening
endeavour and (ii) discuss different approaches that can be
used to filter the signals to separate out a tractable number
that merit subsequent studies.

Example of a screening study
We recently reported on a screening study in Denmark based
on all prescriptions and secondary care contacts over an 18-
year period for Danes born 1950 or earlier [6]. The study used

a sequence symmetry analysis (SSA) design [7]. The analytical
unit for the SSA is the sequence of, e.g. new drug use and a
new disease in an individual experiencing both. If no associ-
ation exists between the drug and the disease, then one
would expect to see equally many drug ➔ disease and dis-
ease➔ drug sequences. If, on the other hand, the drug is asso-
ciated with an increased risk of the disease, then more
drug ➔ disease than disease ➔ drug sequences would be ex-
pected. The SSA has the advantages of being computationally
efficient while being robust to confounders that are stable
over time.

In the screening study [6], more than 200 billion individ-
ual sequences of events were processed, looking for
drug ➔ drug or drug ➔ diagnosis sequences that occurred
more frequently than explained by chance. The rationale
for looking at drug ➔ drug sequences in addition to drug–
disease sequences was that some drugs might cause adverse
effects that would not lead to hospital contact but might
prompt the use of a different drug. For example, starting
treatment with opioids might cause constipation and there-
fore lead to use of laxatives.

In all, 43 575 drug ➔ drug or drug ➔ disease pairs showed
associations in the main analysis. These were ranked accord-
ing to the number of outcomes that could potentially be at-
tributed to the triggering drug, thus assuming that – all
other thing being equal – highest-ranked associations would
represent those with the largest potential public health im-
pact. We further inspected the top 200 drug ➔ drug and 200
drug ➔ disease associations and classified them as unknown
associations, known adverse drug reactions and associations
indicative of sound clinical practice rather than drug effects.
For example, use of paracetamol was associated with later
use of opioids, reflecting rational use of first-line before
second-line drugs for pain management.
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Filtering signals from background noise
In screening studies, signals can arise from three sources: true
causal relations, bias (e.g. uncontrolled confounding) or
chance. One might initially try to filter out associations that
are likely due to bias or chance by further interrogating that
data that gave rise to the signals, either through automated
decision rules or by manual inspection. Also, application of
external biological, pharmacological and epidemiological
knowledge can help to further reduce signals that are
likely of noncausal origin as well as to prioritize remain-
ing signals as for which should be followed up in subse-
quent studies. We present several approaches that can be
considered, although not all are relevant to all settings.

First, analyses using epidemiological designs different
from the one used to generate the signal can help to evaluate
the robustness of the signal to different sets of assumptions.
For example, if screening was performed using a case–control
design, self-controlled designs [8], such as the case–crossover
design [9] or the SSA described above [7], could be used to as-
sess the robustness of the signals to methods that have differ-
ent strengths and assumptions. The self-controlled designs
have as an inherent strength the ability to control for con-
founding by factors that do not vary over time – regardless
of whether they are measured or unmeasured. However, care-
ful interpretation is important when considering results from
multiple designs as truly causal relationships may not be de-
tectable by every design. For example, a self-controlled design
might be useful for detecting abrupt outcomes (e.g. bleeding
events) but is likely of little help in identifying causal drug-
cancer associations [10].

Second, assessment of dose–response patterns can in
some cases inform whether a given drug-outcome association
supports a causal link. As an example, in drug-cancer screen-
ing, it seems reasonable to expect that, if causally related,
higher cumulative drug exposure would confer greater risk
of an outcome. While confounding by indication can belie
apparent dose–response relationships – e.g. greater severity
of an underlying condition may predispose to higher out-
come risk and warrant higher treatment doses – the absence
of an apparent dose–response relationship may indicate a
noncausal association.

Third, assessment of temporality can also add to the un-
derstanding of a potential drug-outcome association. If a
short-term exposure (e.g. vaccines) leads to an increased risk
that is clustered in time, this may strengthen our belief in a
causal association [11], whereas a uniformly increased risk
might suggest confounding due to differences in characteris-
tics among those who use versus do not use the drug rather
than a true effect of the drug itself. Assessment of temporality
might even extend to assessing the occurrence of outcomes
before exposure, such as when using the symmetry design
[7, 8]. If the outcome frequency is elevated both before and
after drug exposure, confounding is likely at play. Similarly,
if a drug is unlikely to have an immediate effect on an outcome
(e.g. cancer), early increases in risk may point to reverse causa-
tion [12] or other differences in underlying patient characteris-
tics between those who use the drug and those who do not.

Fourth, one should consider biological plausibility, e.g.
whether the drug is known to affect the organ system in ques-
tion or whether the outcome can meaningfully be correlated

to known properties of the drug. As an example, the knowl-
edge that hydrochlorothiazide is known to possess
photosensitizing properties [13] strengthened the belief that
an observed association between hydrochlorothiazide and
cancer of the lip could be causal [14]. While plausibility can
to some extent be formalized in systems pharmacology [15],
prioritization will need to rely on human synthesis of
current, imperfect knowledge for some time to come [16].
As such, care should be taken so as not to dismiss otherwise
robust signals on this criterion alone.

Fifth, it is necessary to further consider and quantify po-
tential confounding even if a filter has already been applied
to separate out signals that are clearly due to bias. Confound-
ing refers to the mixing of effects, that is, that an apparent
association of an outcome to a drug is in fact due to other
characteristics (measured or unmeasured) among the users
of that drug and not the effect of the drug use itself. As an
example, the Danish drug-cancer screening found a strong
association between use of drugs for obstructive airway
diseases and lung cancer that even displayed a dose–response
pattern [3]. As smoking causes both lung cancer and obstruc-
tive airway disease, the association is likely due to confound-
ing. Dismissing such signals that stem from structural, but
noncausal, relations between drugs and outcomes cannot be
easily automated. All observations of association between a
drug and outcome are subject to potential confounding, but
to different degrees. If the data are readily available,
additional more rigorous confounding adjustment could be
applied. However, often the relevant confounding factor
might either be unknown or at least unmeasured. Quantita-
tive bias analyses [17] could provide insight into whether
the observed association could plausibly be attributed to bias,
such as by comparing estimates of the required magnitude of
confounding to the strength of known risk factors for the
outcome in question.

Finally, to prioritize remaining signals for subsequent
studies, consideration should be given to the potential dis-
ease burden that can be attributed to a drug-outcome associa-
tion, should it be causal, as we did in the SSA example
described above. The burden is a function of the extent of
use of the drug, the baseline incidence of the outcome, the
strength of the drug-outcome association and the seriousness
of the outcome. Unfortunately, the latter is somewhat subjec-
tive, and patient preferences may not always coincide with
those of investigators or regulators trying to prioritize signals.
As such, there is no widely accepted method for weighting
outcomes by seriousness. By conflating effect size and statisti-
cal precision, P values may be a useful tool for prioritizing
signals in the setting of screening alongside these other
considerations but should not be interpreted with the same
thresholds for statistical significance as applied to studies
evaluating a single hypothesis.

Subsequent studies
Signals that remain of interest after initial evaluation and are
of high priority will need to undergo further evaluation. This
might include further checks of robustness within the same
database that generated the signal [18], such as more refined
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analysis (tailored confounder adjustment, subgroup analyses,
etc.) or investigation of orthogonal hypotheses [19] that are
biologically related to but statistically independent from the
initial screening analyses. When available, further analyses
should leverage separate data sources that complement the
dataset that gave rise to the signal, such as by providing data
on potentially important confounders that could not be
accounted for in the original data source.

The future
The use of large linked health data resources for high-
throughput screening activities holds promise. However,
considerable methodological work is needed to fully charac-
terize the potential for such studies to contribute to the
postmarketing surveillance of both established and newly
marketed medications. This pertains not only to the filtering
of signals as discussed here but also to the design and conduct
of the screening studies themselves. While multiple semi-
automated systems have been established, thoughtful clinical
and epidemiological input will always be needed to assure the
quality of such studies. Time will tell exactly how these ap-
proaches will fit into the evolving pharmacovigilance
armamentarium.
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